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ABSTRACT

Theoretical studies of electromigration in metallic microstructures have

been performed in the areas of atomic dynamics and electronic aspects of

driving forces. A general formulation of electrical conductivity and

electromigration in bulk systems, thin films, and other low-dimensional

systems has been constructed. We have found that electromigration driving

forces can be calculated from consideration of elastic scattering, although

it is the inelastic part of the electron scattering that propels the

migrating atom. However, non-adiabatic recoil effects were found to play an

important role in the atomic migration of light interstitials at lower

temperatures. Model calculations for electromigration at grain boundaries,

dislocations and surfaces show substantial variation in driving forces as an

interface is approached. This variation is caused by the form of the current

distribution near an interface and in multiple scattering resonances between

an interface and the impurity. An approach was formulated to treat

mesoscopic systems, allowing the determination of the electromigration

driving force and the associated microscopic electric field due to transport.

Detailed analyses were prepared for the following mesoscopic systems: one-

dimensional disordered conductors; an impurity-layer or grain boundary

sandwiched between reservoirs; and an impurity in the vicinity of a point

contact (including the case of conductance quantization). The connection

between the local transport field (LTF) and electromigration driving force

has been explored, and the possibility of using a scanning tunneling

microscope (STM) to measure the LTF b-s been investigated. We found that the

STM gives a qualitative measure of the LTF, and that the latter is a measure

of one component of the electromigration driving force on an impurity. The

effect of a thermal gradient on atomic migration was investigated within a

strong-coupling theory based on linear response formalism. The resulting

driving for thermomigration was found to be expressible in terms of a heat of

transport consisting of a ballistic component and a previously unknown

temperature-independent comprnent which is related to the direct force in

electromigration, and which may be substantial in those systems where the

direct-force valence differs appreciably from the nominal valence.
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I. INTRODUCTION

The main objective of our research program was to obtain a better

theoretical description of electromigration in metallic microstructures. The

major question we have addressed is "how is electromigration in a small

metallic system affected by surfaces, interfaces and extended defects such as

grain boundaries, atomic clusters and dislocations?" In answering this

question, we have developed insights that will lead to a better understanding

of the electromigration failure mechanism in VLSI circuits.

To guide future work in VLSI, it is important to have a better under-

standing of the physics of the electromigration process. At temperatures of

device operation, the dominant driving force for electromigration is due to

the momentum transfer to the atoms by the electrons that are flowing through
1

the metal. This is the so-called electron wind force. It follows that a

better understanding of electromigration in metallic microstructures requires

a better picture of the microscopic electronic current flow in metallic

microstructures and a better picture of the dynamical response of atoms to

the momentum transfer from the electronic system.

The notion of a microscopic driving force for electromigration is a

subtle one, and despite its widespread use in virtually all theoretical work,

it has not up-to-now been adequately justified. In Section II we investigate

the nature of the driving force and show that for light impurity atoms there

can be unexpectedly significant corrections arising from recoil effects that

are not included in the standard Born-Oppenheimer adiabatic picture.

The electromigration driving force is ultimately connected to the local

electric field accompanying the electron transport process. This local

transport field is in fact the field which exerts the force on an impurity,

as we illustrate in Section III. The transport field of interest is the

electrostatic field arising from scattered electrons and from tho long-range

macroscopic field. A local field method is described which allows

calculation of the microscopic electric field in the presence of current

flow, and the results of explicit calculations are given in Section IV.

Among the systems considered are grain boundaries, dislocations, thin films,

one-dimensional disordered systems, point contacts and narrow constrictions.

The feasibility of explicitly measuring the local transport field with a

scanning tunneling microscope is also theoretically considered.
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The problem of thermal gradients is briefly considered in Section V,

where the result of a linear-response theory calculation for thermomigration

is described. The calculations are based on a strong-coupling formalism

which allows for arbitrarily strong scattering by impurities. As a result we

find that an analogue of the direct force contribution in electromigration

also arises in thermomigration.

II. DRIVING FORCE FOR ELECTROIGRATION

In this section we examine the standard picture of the driving force for

electromigration I and show that there may be significant corrections to this

picture due to atomic recoil effects. The standard picture is based upon the

Born-Oppenheimer approximation, which we now briefly outline.

A. Born-Oppenheimer Approximation

In the analysis of atomic diffusion in solids it is customary to picture

the diffusing atom, or ion, as located in some static effective potential

field obtained by calculating the total energy of the solid as a function of

the position of the atom of interest. The effective field thus obtained

includes contributions to the total energy of the solid from the energy of

interaction of all the nuclei and electrons which are present in the crystal,

and also the contributions from the kinetic energy of the electrons. The

actual diffusion "jump" is then pictured as a thermally activated process in

which the atom absorbs energy from its environment to surmount a local

potential barrier separating its initial and final sites.

The existence of an effective force field governing the dynamics of the

atoms in a solid finds its justification in the Born-Oppenheimer adiabatic

approximation - the guiding principle being that since the ions are so much

heavier than the electrons, the atoms move much more slowly than the

electrons, which thus have enough time to re-adjust themselves to lower the

total crystal energy at each point on the atom's path. One can then

determine the effective field by observing how the total crystal energy

changes as a function of the atom's position along a jump path in the solid.

Within the Born-Oppenheimer approximation we thus determine a force field

obtained by assuming that the atoms are fixed in position (or alternatively,

act as if they were infinitely massive as far as their interactions with the

electron gas is concerned), while the electrons are assumed to obey the

Schroedinger wave equation. The force field obtained for the atoms can then

4



later be used in the Schroedinger wave equation for atomic motion, although

for diffusion we usually need only consider classical atomic motion.

When electron currents are present it is clear that the dynamics of the

electrons in the solid will be altered, and so too, the effective force

fields. The force arising from the electron current and the attendant

electron scattering is calculated within the Born-Oppenheimer approximation

by assuming that the atoms are fixed in position, just as in the calculation

of the force-field in the absence of current. Assuming that the atom of

interest has bare valence Z and is at position r, the bare potential seen by
+ -4 2 _+ _

an electron at position r due to that ion is Vb - -Ze /1r-roj, where e

is the magnitude of the electron charge. It follows that the net force

exerted on the ion due to the combined action of the non-equilibrium electron

current or electron wind, and the macroscopic electric field E has the

Feyunan-Hellmann form
2

_+ , b'd 3

=ZeE - 6n(r) 1) r
00

where 6n(r) is that part of the local electron density which is out of

equilibrium, i.e., the part which depends on the electron current and the

related transport field.

Now, within this picture, the force field = '( ) lowers the barrier

for diffusion preferentially in one direction, and this gives rise to a net

atomic current. The appropriate effective force for the resulting

electromigration is actually the average of F(r ) over the jump path, i.e.,

rB
F 1 ( o)dr (2)
Feff = AB o

rA

where rA and rB are the initial and final points in the jump path, and

XAB - IrA rB1 is the jump distance. Feff is the driving force for

electromigration, and corresponds to an equivalent constant force that would

lead to the same lowering of the energy between rA and rB as does the true

force (r 0). That is, by construction, the energy is lowered by an amount

AU - FeffIAB between sites A and B, which is exactly the same result as would

be obtained by assuming a constant force field Feff acting everywhere between

A and B. The atomic current, Ja is related to the effective force through

the usual Nernst-Einstein relation, which in its simplest form is
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Ja - (DNa/kBT)Feff (3)

where D is the diffusion coefficient, N is the concentration of mobile atomsa

(or impurities) and kBT is the thermal energy at temperature T. Eq. (3) is

valid for interstitial or vacancy diffusion mechanisms.

B. Recoil Effects

Now let us examine the validity of our previous assumption which regards

the driving force for the electromigration as arising from a steady force

F(r ). The major contribution to ( o) usually arises from the electron-wind

contribution contained in the second-term on the RHS of Eq. (1). Now,

focussing on the electron-wind force, the assumption implicit in the Born-

Oppenheimer adiabatic approach is that the electron-wind force is a steady

(time independent) force. But the wind-force arises from the momentum

transfer per second from the electrons to the atom during the scattering

process, and this is not independent of time except in some long-time-average

sense.

We expect that the adiabatic picture of a time-independent force is

valid if the momentum transfer per collision, po, is very small compared to

the momentum of the atom, and if the rate of collisions, Vcoll' is moderately

high so that a steady wind-force is meaningful. In the case of

electromigration, however, these conditions are not met. For a metal, p is

on the order of the Fermi momentum, and this is not necessarily small

compared to the momentum of the atom. Also, collisions are rare events,

i.e., even for high electron currents we have Vcoll << V , where v0 is the
3°

oscillation frequency of the impurity atom in its well. We also note that

the duration of a collision is very short on all time scales of interest,

being on the order of r0/VF where r0 is the range of the potential and vF is
3o

the Fermi velocity. We are thus led to a model in which the atom is

subjected to a random train of impulses, the time-dependent force being

F(t) = p o b (t-tn) (4)

n

where tn are the randow times of impact, and for simplicity, we have ignored

any position-dependent variation in the rate of momentum transfer. We

restrict attention to the regime of a low-intensity beam (small V Coll) which

is appropriate in the ohmic regime for transport since v coll is proportional

to the electron current. A very dilute impurity-concentration is also
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assumed. To allow for different directions of momentum transfer we can

average our final results over all directions of p in the incident electron

distribution.

Let us first investigate the case that p is arbitrarily small. The

ensemble average velocity of an impurity atom can then be calculated from

linear response theory,4 with H'(t) - -r.4(t) being the perturbed

hamiltonian for an impurity at ro" To first order in H' the i-th component

of the average velocity is given by

<v i(t)> - F'ij (t' )F'j(t-tl)dt' (5)

j0

where Ri (t') = ih- I < [vi(t'),xj]> is the standard Kubo correlation
iJ i jeafunction for the equilibrium system.

The physically relevant quantity is the time-average velocity over a

long time T, i.e.,

T
12

v = lim - T dt <vi(t)> (6)

2

From Eqs. (5) and (6) we have

v Z Rij (t')F dt' (7)

where

T
2

F T Fj (t")dt"

2

= Vcoll Po j . (8)

We have thus established the result that to first-order in p the time

average response to theimpulse train F(t) is equivalent to the response to

the time average force # - Vcollo , just as would be expected in the

adiabatic picture.

Corrections to the adiabatic picture arise because the momentum transfer

p0 is large enough for atomic-recoil effects to influence the atomic

dynamics, thereby preventing the replacement of F(t) by F. The effect of

atomic recoil depends on the details of the atomic diffusion process. Here
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we investigate the case of interstitial-impurity diffusion in the classical

regime.

Consider an interstitial impurity atom in a harmonic potential energy

well. In this highly idealized diffusion model the atom is assumed to

complete a jump to a neighboring site when thermal fluctuations cause the

atom to undergo an excursion beyond some critical displacement, a c-a/2, where

a is the distance between interstitial sites. In the absence of collisions

with the electron current, the probability of the atom making a successful
* 5 *

jump is exp(-#E ) per attempt, where E is the activation energy and P -

(k B T). The number of attempts per second is vo0 , which is the oscillation

frequency of the atom in the well. The energy transfer in an electron-atom

collision is typically much smaller than E , which implies that the

collisions only affect the success rate for jumps that would have been very

nearly successful in the absence of the electron current. For these jumps

let the average velocity of the impurity be denoted by v. The corresponding

atomic recoil energy in a collision is

1 i-* + 2 *AER= 2I pi +Po - Ipil ] (9)

where Pi - Mvi, and M is the mass of the atom. Note that in any given

collision, it is the full recoil-momentum p which is transmitted and not the

long-time-average momentum transfer, which is on the order of poV Coll/v and

hence arbitrarily small as v coll , 0.

Now, only the part of AER which is odd in p0 can lead to a net atomic

current. This allows us to ignore the p2-term in Eq. (9). It then follows

that a collision lowers the energy barrier E by an amount AE = viPocos ^

where we have chosen the jump path to lie along the +x axis, and coso = po.x.

Similarly for diffusion jumps along -x, the barrier is raised by AE. Using

the new activation energy for the fraction of jumps that experience a

collision, we find an enhancement factor, F, given by

J _ <sinh QAE> (10)

Jad <OAE>

where J is the true atomic current including recoil effects, Jad is the
I

current in the adiabatic approximation, and <...> = J dcosOcosO..., which

arises from averaging over all angles of p in the out-of-equilibrium part of

the shifted-Fermi-sphere distribution for incident electrons in a free

electron model. We have taken the net electron particle-current to be along

8



the +x direction. In obtaining (10) we have used the result contained in Eq.

(7), namely that J approaches Jad in the po _+ 0 limit. Evaluation of Eq.

(10) yields r - 3u-[cosh u - u sinh u], where u - Ov po .

Since vi is larger for smaller M, Eq. (10) implies that, all other

things being equal, a light impurity feels a greater driving force than a

heavy one. This affords a possible explanation of the Haffner effect, I which

is the observation that in an isotopic mixture of pure liquid-metals, it is

the lighter isotope that invariably moves in the direction of the electron

particle-current.

According to Eq. (10), the enhancement is small unless fiviP > 1. As an

estimate we use vi = 1oa , which is a typical velocity during a successful

jump in the weak-damping regime, which is implicitly assumed in our analysis.

As representative values for metals we take p0 -1 a.u. - 2 x 10- 1 9 g cm/s,

v -6 x 10:2 s- , and a = 2.6 A. We then calculate that r = 1.06 at 300K

and r - 1.6 at 100K. For light interstitials, F is expected to be larger due

to the larger vibrational frequencies. As an example, for H in metals 6 (v >
2.5 x 1013 s- 1 ) we find that F > 2.4 at 300K. However, for that system the

diffusion process is considerably more complicated than our model allows,

i.e., resonant modes, polaron-like distortions and quantum-mechanical
6

diffusion processes should be considered. The complexity of the H-diffusion

process in metals may also account for the fact that our result yields a

larger wind-force for hydrogen than for deuterium, but this is often not
6 *observed. In any case, because r depends sensitively on vi, and it is

difficult to obtain a reliable estimate of vi, our numerical estimates should

be viewed with caution. For example, for the case v - 6 x 1012 s- 1

doubling our estimate of vi gives F = 1.3 instead of 1.06 at 300 K.

Our conclusion as far as recoil-effects are concerned is that we do not

expect very large corrections to the adiabatic picture unless we are

considering light interstitials at lower temperatures (below room

temperature). However, we cannot rule out interesting recoil effects for

heavier impurities if the collision frequency v Coll turns out to be extremely

high due to huge electron-current densities (J - I02 A/cm 2 ), such as might
7

occur at a point contact in a nanostructure constriction. For larger Vcoll
the possibility of multiple collisions during the jump process becomes more

likely and a non-linear response may occur, i.e., atomic current varying

quadratically in the electron current density, for example. Further details

9



concerning the recoil-enhancement effect in the linear regime have been given
8

elsewhere for both classical and quantum-mechanical diffusion processes.

III. ELECTROMIGRATION AND THE LOCAL TRANSPORT FIELD

The connection between the electromigration driving force and the local

electric field follows from the gedanken experiment used to operationally

define an electric field. To determine the local electric field EL(r) at

position r we imagine placing a test charge Q at r and imagine measuring the

force F on the test charge. The local electric field at r is then given by

L(r) - lim (F/Q) (11)
Q 0

Combining this operational definition and Eq. (1) with Q - Ze, we find that

(')- o(') + eV n(r) d3r' (12)L 0 fIr-r' I

where V - a/ar and we have introduced the dummy variable r' in the integrand

in Eq. (1).

It follows from Eqs. (1) and (12) that the force on any impurity having

bare valence Z, i.e., having core charge Ze, and placed at position rof is

given by

F - Ze EL(r) (13)

for arbitrary values of Z. Alternatively we can express F in the more common*

form by introducing an effective valence Z and writing

- Z*e o (-o) 0 (14)

Eqs. (13) and (14) provide the connection between the local field L and the
* L

effective valence Z , which is traditionally taken as the central quantity in

specifying electromigration driving forces. The important part is that if we

can determine the local transport field EL(r) we can immediately obtain the

driving force for electromigration. Of course, L (-) must be determined for

the system in the presence of all impurities. Here and in the remainder of

this report we are assuming the validity of the adiabatic Born-Oppenheimer

approach described in Sec. II.A.

Since the determination of or Z is essentially a problem in

determining the local transport field (LTF), we have focussed attention on

10



the determination of LTF. The results have been described in detail in a
9-14

series of papers, which we recapitulate in the current report.

We call our basic approach to the LTF "the local field method". The

method is based in part on Landauer's picture of electron conduction in the

presence of localized scatterers1 5 ,1 6 and in part on insights which we have

developed from previous work on electromigration. l 2l In particular, our

approach differs from Landauer's in that we place greater emphasis on the

details of the quantum mechanical scattering process. Such details can be of

crucial importance for microstructures, especially when impurities are

situated near surfaces.

The local-field method provides a tractable scheme for determining the

microscopic potential, the electrical resistivity, and the electromigration
11

driving force on an impurity in a microstructure. We now proceed to

outline the basic ideas behind the method.
15

According to Landauer, the increase in resistivity due to an impurity

is associated with a microscopic dipolar source of electric field and

current. This dipolar source is called the residual resistivity dipole

(RRD). The RRD is not only a useful concept for the formulation of electron

transport in microstructures, but is also important for understanding the

detailed nature of the local field. An effective RRD can also be defined

when the scatterer or a group of scatterers is in the neighborhood of

interfaces of a microstructure, provided that the size of the scatterer group

is not larger than the background mean free path 1. To understand how the

RRD field is set up due to the scatterers, we consider a scatterer group in

the vicinity of interfaces of a microstructure. The center of this scatterer

group is at location r0  When electrons are scattered by the scatterer group

and arrive at another position, say r, there is a local pile-up of charges

and the local potential is adjusted so as to neutralize the excess space

charges. The local potential shift is the RRD field. It is then clear that

for Ir-ro < 2, the local potential depends on the quantum mechanical

scattering by the group and interfaces. When Ir-ro > 2, the local potential

depends also on the background scattering, which we assume is incoherent in

nature. The calculation of the local electrostatic potential is then divided

into two regimes, namely, the near-field regime (region close to the

scatterer group) and the far-field regime (region far from the scatterer

group). Solution of the problem in the near-field regime requires a full

11



quantum-mechanical scattering treatment. The far-field regime defines a

Boltzmann-type transport problem. Since the electromigration force depends

only on the local scattering environment, the electromigration driving force

can be found from consideration of the near field regime. However, in

general, the electron distribution that is incident upon the scattering group

is required and this will generally depend on the electron dynamics in the

far-field region. The detailed nature of the fields and currents in the far-
9,11

field region has been considered elsewhere.

We consider a metallic microstructure connected to two highly conducting

leads, one to the left-hand side and the other to the right-hand side of the

microstructure. The microstructure can be a thin film, thin wire or even a

superlattice. The leads are connected to electron reservoirs which supply

electrons to, and drain electrons from, the microstructure. For simplicity

we assume that the leads are made of the same material as the microstructure

(i.e., they have the same electron density and the same mean free path due to

background scattering). The microstructure itself contains additional

impurities.

For the present, consider the case of a microstructure containing only a

single impurity cluster, or scatterer group, whose size is characterized by

the length Lc where Lc < 2. The electrons incident upon the scatterer group

are described by a shifted Fermi distribution which is set up by the

background scattering that occurs in the leads and in the region of the

microstructure far from the scatterer group. Assuming a free-electron-like

bulk material, the part of the incident distribution that is out of static

equilibrium is

gk - -revk.E6(ek-EF) (15)

where r is the electronic relaxation time associated with background

scattering processes, 0 is the uniform macroscopic electric field in the

absence of the scatterer group, vk = hk/m is the electron velocity, Ek

2 k 2/2m is the electron energy, EF is the Fermi energy, and m is the electron

mass. The net particle current arising from the distribution in Eq. (15) is

given by 30 - -n0 e4 0 /m, where n is the average density of conduction

electrons in the microstructure.

In the near-field region, the general method is the following: First,

we calculate the scattered wave function 0 k (r) for each electron incident

in the plane-wave state 0k(r) - I/2 exp(i- r) within the microstructure (0

12



volume). Second, we compute the perturbed electron density, 6n G(), due to

the electron current (or "electron wind"). It is given by1 1 '2
0

V (+) , 2
6nw(r) - klok r(16)

k

Third, we determine the corresponding self-consistent electrostatic potential

64(r) from the Thomas-Fermi screening relation1 1 '1 5 '2 0

6n (r)
64 (r) - -e(dn/dE) (17)

where dn/dE is the electronic density of states at EF in the desired region

of space. We remark that the self-consistent electron density is not 6nw,

but is 6nw + 6n where 6n is the induced screening charge which attempts to

locally neutralize 6n w . Although 6$ in Eq. (17) is expressed in terms of

6nw, it actually arises from 6nw and 6n . The microscopic electric field,

6EL( r), which is associated with the electron wind is determined from the

potential through the usual relation

6EL( r) - -VS$(r) (18)

Linear response is assumed throughout, i.e., only the response linear in E0
is considered. The total microscopic field includes the wind contribution

SEL(r) of Eq. (18) plus the so-called direct-field contribution to be

considered later.

Finally, the electromigration driving force due to the electron wind can

be expressed in the general form
1 2

w(ro) -- 6nw() a d'r (19a)

0

-+ - gk k(19b)

k 0

where V - V(r-0 ) is the screened electron-impurity interaction, i.e., the

final self-consistent potential after screening of the bare interaction

Vb(r-0) by the electron gas. It can be explicitly verified that for a

single impurity in an electron gas, expression (19) is equivalent to the

momentum-transfer expression
1 2

Pw (' 0- h(k-c)P kk, ,k (20)

kk'

13



where Pkk' is the transitional probability for an electron being scattered

(elastically) from state to state i' by the impurity.

In general the net driving force on an impurity of pure valence Z at

position r0 consists of the wind force plus the direct force, i.e.,

) - + (21

where the direct force has the form
12

d ('0) - Zeo(0 ) - JSnd(r) V d3 r . (22)

0

Here 6nd(r) is the unscreened electron-density perturbation associated with

the polarization due to the direct electrostatic field acting on the

impurity. The local microscopic field EL(r) thus consists of the wind

contribution (18) plus a direct-field contribution equal to Eo(r) plus the

contribution from the local polarization due to o (').

Now, the direct force can be expressed as

Fd(r) - ZdeEo(r0) (23)

where Zd is the effective valence associated with the direct field. We shall

regard Zd as a known quantity; it has been considered previously in a strong-

coupling theory by Rimbey and Sorbello.2 1'2 2 We concentrate instead on the

wind force contribution in the present report. In any case, for nearly-free-
-1

electron-like metals, Fd is typically of order (kF1) times Fw, and hence

the direct force is relatively small compared to the wind force (kFI >> 1

even at high temperatures).

The key expressions of the local-field method are Eqs. (16)-(19). The

specific form (15) for the incident electron distribution is appropriate for

a free-electron gas in the presence of uniform background scattering. For

the applications to be discussed in the next section, however, the specific

form of gk may differ from expression (15), but Eqs. (16)-(19) remain valid.

IV. APPLICATIONS

We now consider applications of the local-field method to bulk-like

systems and mesoscopic systems. We define bulk-like systems to be those

systems for which the system length, L, along the transport direction is much

larger than the mean free path, 1, due to uniform incoherent (or inelastic)

background-scattering processes. In the case of bulk-like systems the

14



incident electron distribution is taken to be set up by the uniform

background-scattering. Thus, the localized scatterers are assumed to be

relatively few and far between. In that case gk has the form given in Eq.

(15). Using this explicit form it is a relatively straightforward matter to

calculate local fields and forces for various scattering complexes using Eqs.

(16)-(19).

For the case of mesoscopic systems, which we define by the condition

L << 2, the incident distribution is specified in terms of a source and sink

of electrons at the ends of the sample. More conveniently, we adopt
23

Landauer's reservoir configuration, in which ideal reservoirs are connected

to each end of the sample.

We now describe calculations for the bulk-like systems including an

impurity near a grain boundary, near a dislocation, and in an ultra-thin

film. This is followed by a description of calculations for mesoscopic

systems including a l-d disordered conductor, a grain-boundary in the

presence of an STM probe, and a point contact having an impurity in its

vicinity.

A. Bulk-like Systems

Our calculations for bulk-like systems are based on the jellium model,

with incoherent uniform background-scattering giving rise to the incident

electron distribution gk of Eq. (15). Before presenting the results for

particular scattering complexes, we present a general relation between the

net wind-force w on the scattering complex and the extra resistivity 8p due

to that complex. The desired relation is
1 2

_+n eO6p. _+
Fw -- Po (24)

where p is the resistivity in the absence of the scattering complex. In

general, the extra resistivity due to the scattering complex is a tensor, as

implied by the notation 6+, because the complex may not be a spherically

symmetric scatterer. In the case of spherically symmetric scatterers SP. -

6pi° in Eq. (24), where 6p - m/noe2 imp and r imp is the usual momentum-
weighted impurity relaxation time, i.e.,

1 - Z [1-cosd ,ik' )IPkk, (25)
imp k'
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To derive Eq. (24) one makes use of Eq. (20), regarding the scattering

complex as a single impurity for the purposes of the derivation.

In the bulk-like systems to be considered here the geometry will be such

that the wind force of interest will be parallel to 1 . It then follows from0

Eq. (24) that for this component (say along the x-direction)

Fw - -n0eQ6p J 0 (26)

where 6p refers to the diagonal element of the resistivity tensor (6) xx and

where 1 - o/Po is the electron current density in the absence of the

scattering complex. The important point we wish to emphasize is that

Fw a Jeln ' (27)

where Jeln is the incident electron particle-current density. Eq. (27)

states that the net momentum transfer per second to the scattering complex,

i.e., Fw, is proportional to the extra resistivity (or residual resistivity)

due to the scattering complex. Furthermore, for the examples to follow, the

total momentum transfer (along the x-direction) to the scattering complex

goes entirely to the single impurity in question which is in the vicinity of

the extended structural defect, whether it be a grain boundary, dislocation

or surface. The reason for this total momentum transfer going to the

impurity is that the extended defects will be oriented to lie parallel to

Seln' and since they will be modelled to have smooth (specular) interfaces,

they will not absorb any momentum parallel to the interface.

We now present model calculations for an impurity in the vicinity of a

grain-boundary, dislocation, and a surface of a thin film.

1. Impurity Near a Grain Boundary

In the jellium model a grain boundary can be modelled as a repulsive
24

barrier, which we take to be of height U and width d. This model ignores

the details of the lattice mismatch at the boundary, and it replaces the

effect of loose mis-fit at the grain-boundary as a region of lower density

background positive charge, and therefore, a less attractive potential. This

is equivalent to assuming a more repulsive potential in the grain boundary

region compared to the uniform background potential. Choosing the z-

direction perpendicular to the grain boundary, the model potential for the

grain-boundary is taken to be

16



U(r) - U o < z < d0

- 0 otherwise (28)

where U is a constant. For simplicity we take the impurity to be a short-0

range isotropic scatterer which is modelled as a delta function potential

given by

V(r) - -v 6(r-r ) (29)

where v is a constant and the impurity is located at r .

The wind force is calculated from Eqs. (16) and (19). To proceed it is

necessary to obtain the scattering states f+k(r). We regard the impurity

potential strength v0 as a weak parameter, as indeed is consistent with the

notion of modelling a physical potential by a delta function potential. The
2

force on the impurity is desired to lowest order in v, i.e., to order v.

Therefore we need to determine 0k (r) to first order in v but to all orders

in the grain boundary potential U . Using the results of scattering25 0

theory, it is easy to show that up to terms linear in v the scattering

states are given by

<0+ (VI) __+___ >_

Ok() k (r) + L k r - k j (30)ko

where the k'Ak(r)+)kwhr are the complete set of scattering states for the grain

boundary potential U in the absence of the impurity, and the Ek, are the

corresponding energies of these states. The energy of the incident states is

E - EF, and q is a positive infinitesimal.

Now the wavefunctions 0k (r) vary along the grain boundary interface

as exp(i 11.)r1 ) where k1, - (kxeky) and likewise r 1 - (x,y) since the

unperturbed hamiltonian has translational invariance along the coordinates

parallel to the interface. We take the incident electron current density Iel

to lie parallel to the grain boundary, along the x-direction, say, and

consider the x-component of the wind force on the impurity. From Eq. (19b)

we have
~ [p ,V]

(Fw)x- x k<+) i 1 ( + ) >- 31
k gk k(31)

k

where we used the fact that aV/ar - -av/a - [p,V]/ih, where p is the

momentum operator. Now the matrix element of the commutator in Eq. (31) can
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be simplified by noting that in the absence of the impurity there is

translational invariance along the x-direction, and therefore the x-
(+)dependence of 0k (r) enters through a factor exp(ikxx). Combining this

result and Eqs. (30) and (31) we find that

(Fw)x - ft(k ( (32)

kk'

which is of a form analogous to Eq. (20) if one adopts a golden-rule

expression for Pkk'' replacing the incident plane wave states k,k' by
(+) (+)
k ' k', respectively.

The wavefunctions 0k (r) are readily determined analytically from

elementary considerations. Numerical calculation of the resulting

expressions are straightforward, and involve only a double integral over

angles on the Fermi surface. The results are shown in Figure 1 for the wind

force Fw (z) for an impurity at position z in the case of aluminum (kF =

0.9273 a.u.) and assuming three different values of the ratio U0 /EF, and

taking the grain boundary width to be 5 a.u. = 2.6A. Also shown in Figure 1

is the microscopic current density j x(z) which would exist at position z in

the absence of the impurity. This local current density is determined from

(xz) - Re g 0k + ImX +>  (33)
k

where Re denotes the real part. Both F .(z) and j x(z) have been normalized towx

their bulk values so that far from the grain boundary they each approach

unity. (The curves are then independent of the value of v .) Both Fw(z) and

j x(z) have even symmetry about the center of the grain boundary (z - d/2).

An interesting feature of Fig. 1 is that both the wind force and the

local current density are substantially reduced within the grain boundary. A

reasonable choice of barrier height, such as Uo = 0.5 EF, leads to current

and wind force values that are on the order of 30% of their bulk values when

the impurity is within the grain boundary. It is also interesting that the

wind force and the local current-density track somewhat closely, indicating

that the wind force is qualitatively measuring the microscopic electron

current. The wind force shows somewhat greater variations, however, both in

terms of the overall reduction in the grain boundary region and in terms of

the intensification of the Friedel oscillations outside the grain boundary.
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The physical process behind the reduction of current and wind force at a

grain boundary is that the region within the grain boundary is to some extent

shielded from incident electrons. This occurs because incident electrons are

reflected away at the z - 0 and z - d interfaces. In more pictorial

language, we may say that the electron wind does not blow so hard within the

grain boundary region.

There is an important implication that our calculations have on the 1/f-
26

noise problem. According to standard theoretical models, some recent 1/f-

noise data can be explained if impurities hop between sites and if in the

process their contributions to the resistivity change on the order of 20%.

This size fluctuation is quite compatible with our results, which indicate

that an impurity which hops inside a grain boundary will feel a relative

reduction in wind force on the order of 10% to 50%. Such a relative change

in wind force implies, by expression (27), an equivalent relative change in

the resistivity contribution of the impurity in question. Thus our results

do suggest that experimental data on 1/f-noise is compatible with the

expected resistivity fluctuations for an impurity hopping near a grain

boundary.

2. Impurity Near a Dislocation

We can perform an analysis for an impurity near a dislocation using

methods similar to those which we employed for a grain boundary. Assuming a

jellium model, we can model the dislocation core as a repulsive barrier in an

otherwise uniform medium. The dislocation potential is modelled as

U(r) -U 00 < R < a

0 (34)

-0 R>a

where r - (9,z) and R - 191 is the radial coordinate in cylindrical polar

coordinate system. The axis of the dislocation core is along the z-axis and

the incident current is also along the z-direction. The impurity is again

modelled by the delta function form given in Eq. (29).

The derivation of the wind force follows the same lines as in the

previous section for the grain boundary case. We deduce that the z-component

of the wind force on the impurity is given by an expression precisely like

Eq. (32) for (F w)x except that the subscript x is replaced by z everywhere it

appears in Eq. (32).
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Again the wavefunctions k (r) can be readily determined analytically

from elementary considerations. In the usual way the wavefunctions are

expressed as a sum of Bessel functions J and/or Hankel function H'n with

cos nO angular variation accompanying them. The expansion coefficients are

determined by matching inner (R < a) solutions J (k'R) and outer (R > a)n

solutions J n(kR) and H n(kR). The results are shown in Fig. 2a for the wind

force Fw (R) in the z-direction for an impurity located at a distance R from

the dislocation axis. The metal is aluminum, and the dislocation radius is

chosen to be a - 2 a.u. Also shown in Fig. 2b is the corresponding local

current density jz(R) for the unperturbed problem, the latter being found

from the right-hand side of Eq. (33) after the replacement of subscript x by

Z.

The qualitative features of the wind force and current curves are

similar to those in Fig. 1 for the case of a grain boundary. Again we see

large depletion of current and wind force in the barrier region.

3. Impurity in a Thin Film

We consider a thin film in the jellium model. The film surfaces are

taken to be at z - ±d/2 and the impurity is taken to be at position z =

d/2 - b, that is, at a distance b beneath the upper surface. The surfaces

are assumed to be specular, resulting in a waveguide for electron waves. The

incident electron wavefunction has the form

o- J2 sin (z + !Ne ' , (35)
nk - [d2

where p - (x,y), k = (k x,k y) and n is an integer which specifies the electron

sub-band. The energy of the incident wave is the Fermi energy EF, which

results in different Fermi momenta k Fn for the plane-wave portion of the

wavefunction. Explicitly, EF 2 k2 (1) /2m. For simplicity, weF I Fn d I /m o imlctw

choose the impurity to be an isotropic scatterer of plane waves, which

implies that it can be described in terms of an s-wave phase shift, 6 . The

scattering states 0(+)(() can be explicitly determined, and this has been

given elsewhere. 11

Calculations of the wind force and the resistivity change have been

performed for several values of 60 and these are shown as a function of d in

Fig. 3 for the parameters appropriate to a film of CoSi 2, which has a bulk
Fermi wavevector of 0.415 a.u. and an assumed mean free path - 200A. The
impurity is taken to be 2 a.u. from the surface (b = 1.IA). The curves show
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the fractional change in film resistivity assuming a dilute concentration of

impurities near the surface. The impurities are randomly located on the

plane z - d/2 - b and have concentration ni impurities per unit area. The

quantity Ap/p. is the net resistivity change Ap divided by the resistivity p.

for an infinite bulk system. The connection between (Ap/p ,) and the wind

force is

Fin d x ( )d J (36)

which follows from Eq. (26). [The factor of d in Eq. (36) arises from the 0-

factor in Eq. (26).]

The results plotted in Fig. 3 reveal that significant quantum size

effects occur for d < 50 a.u.. The jumps occur in the vicinity of new

channels of waveguide propagation opening up as the distance d varies. This

can also be described as due to the discontinuities in the electron density

of states at a sub-band bottom. Parameters have been chosen so that for

large d all curves approach the Fuchs-Sondheimer expression

A= - (1-p) i (37)POO 8d

where p, the specularity parameter, was chosen to be 0.9. In general, our

resistivity values tend to be higher than the Fuchs-Sondheimer expression

(37).

We note that for larger values of 6 (stronger scatterers) the curves

dip-down where a new sub-band comes into play. This is especially evident

for 6 - 900. This lowering of the resistivity (and the wind force) can be

traced to what we call a "transparency effect" which arises from multiple

scattering between the impurity and the surfaces (or waveguide walls). In

fact, if the background scattering were considerably weaker (I > 1000 a.u.)

the downward dips in Fig. 3 would extend virtually to zero in panels a, b and

c. The Born approximation result is shown in panel d. Since the Born

approximation is based on the weak scattering limit (5 -+ 0), the differenceso

between the Born approximation curve and the others is indicative of the

importance of multiple scattering between the impurity and the film surfaces.

B. Nesoscopic Systems

We now consider the local field and wind force in mesoscopic systems.

The systems are assumed to be flanked by reservoirs on either side. These

reservoirs act as a source and drain for electrons. Because the length of
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the sample is assumed to be smaller than the background mean free path, these

systems generally exhibit strong quantum mechanical interference effects.

1. One-dimensional Disordered Conductors

One-dimensional systems are interesting in their own right and have

relevance for understanding quasi-one dimensional systems such as molecular

chains or wires of extremely small cross section.

Consider a one-dimensional chain of potentials vi representing a

sequence of impurities in a one-dimensional system at zero temperature. The

total potential has the form

V(z) - Z vi(z-zi) (38)

i

where z. is the position of the i-th impurity. We shall take the impurity

potentials to be localized and non-overlapping so that V - 0 re~ions exist

between impurities.

We consider the Landauer configuration, where reservoirs acting as

sources and sinks of electrons are attached to the ends of the chain. The

length of the chain is L, and we assume that L << 2, where 2 is the mean free

path for background scattering and other i--' itic processes. We can

therefore totally neglect all scatterin0 piocesses other than the elastic

electron-impurity scattering c>e to V(x). This greatly simplifies the

conductivity and electromigration problems.

Let the chemical potentials ot Lh reservoirs be A, and A2 on the left-

and right-hand ends of the chain, respectively. Since we are concerned with

linear response, we take AM - Al-A 2 to be arbitrarily small and positive.

The reservoirs give rise to an incident distribution of electrons, gk' where

for each electron spin

gk = AM 8(k) 6(ck-fF) (39)

where e(k) is thLe unit step function, i.e., 8(k) - 1 for k > 0 and equals

zero for k < 0. A positive (negative) value of k refers to electrons

travelling to the right (left). The incident electrons in gk are reflected

or transmitted by the impurity chain, with probab'lities R and T,

respectively.

Calculation of the potential drop across the chain, using the one-

dimensional forms of Eqs. (16) and (17) gives for the left- minus right-

potential difference
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L R e (40)

where we used the one-dimensional density of states dn/dE - 2/iVF, including

both spins. To obtain Eq. (40), we evaluated 6n (z) as an average of

expression (16) over a window a few wavelengths in width. The effect of this

is to eliminate cross-terms in 6n w (z) due to the exp(±ikz) components of

O+)(z). This procedure is justified in the conductivity problem, where we

are interested in a local average field, i.e., we want the persistent part of

6cZ(r) and not the Friedel oscillations.

ThE neL transmitted particle current, Jt, is given by

- gkvkT = (41)

k

The resistivity, p, of the chain equals the average field divided by the

charge current, i.e.,

-( L-60 R)/L (42)
-ej t

which, after substitution of expressions (40) and (41), gives the celebrated

Landauer formula
2 3

irh R

Le 2 T (43)

The Landauer formula is appropriate when the voltage probes measure the

self-consistent potential 6t(z) across the sample. In the experimental

configurations thus far achieved, this is apparently not the case. Rather,

it has been argued 2 7 that in a standard two-probe measurement between voltage

pads, the relevant quantity is the chemical potential difference AP of the

pads and not the electrostatic potential difference across the disordered

region. In this case, the new resistivity, p', which includes the contact

resistances at the conductor-reservoir interfaces, is given by2 7

, -(Au/e)/L w_2 (44)
-ejt Le2 T4

Now consider the electromigration force, Fi, on the i-th impurity in the

chain, which we write as the sum of direct- and wind-forces, i.e., Fi - Fd +
id
F . Since there is no background scattering, it follows that the externalw
field E0 (zi) vanishes. Consequently, by Eq. (23),

i
Fd - 0 (45)
d
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The vanishing of the direct force means that the impurity senses only

the wind force. The latter is now evaluated from the momentum flux on the i-

th impurity. Consider an electron incident onto the chain in state k, and

let aL(k) and aL(k) be the plane wave amplitudes for the electron scattering

state immediately to the left of the impurity. Specifically, aL and aL are

the coefficients of the exp(ikz) and exp(-ikz) components, respectively, of

+k (z). Similarly, define 4(k) and j(k) Just to the right of the

impurity. For a given incident k, the momentum/sec transferred to the

impurity is found by calculating the product of the number of electrons/sec

incident onto the impurity and the momentum carried per electron. The result

is then summed over L,R, and +,-, taking into account direction of momentum

flux. Finally a sum over k is performed. The result is

Fw- 2 [ - 2 a(k)2 a(k) (46)w L k 'k ~kIL~J IL\ - IR~J Rk

Expression (46) can also be obtained from Eq. (19), rather than by the

present momentum-transfer analysis.

The wind force Fi bears no direct relationship to the additionalwresistivity due to the i-th impurity. However, the total force on the

impurities is related to the total resistivity. To see this, use the global

form of Eq. (46) for the entire system, in which case, the factor in

parentheses in Eq. (46) equals 2R/L, and we obtain

Ftot 2kFAR (4/)w -(

where FtOt - X Fi.
iw

Upon comparing Eqs. (40) and (47) we deduce that

Ftot 2ekFF [ [64 L - (48)

Thus, the total electromigration driving force directly measures the self-

consistent potential drop across the conductor. We can re-cast Eq. (48) in

terms of the Landauer resistivity (43). By inspection, we have

Fw - _noeLpJ (49)

where n0 -
2kF/w is the equilibrium 1-d carrier density and Jo - -ejt is the

charge current. Note the striking similarity between Eq. (49) and the result

(26) for a bulk system. In the case of a single impurity between reservoirs,

Ftot is the wind force on the impurity, and p becomes the additionalw
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resistivity due to that impurity. Then Eq. (29) becomes the 1-d form of Eq.

(26), despite the fact that Eq. (26) refers to a bulk-like

system dominated by background scattering.

We have performed explicit calculations of the wind force by means of
+ +

Eq. (46). The amplitudes aL,a R are easy to calculate by means of the
28 R

transfer-matrix method. For a series of randomly placed barriers in a one-

dimensional line we calculated the electron scattering, electromigration

driving forces (or local electric field) and overall resistivity of the

configuration. We chose the impurity locations randomly for a given number N

of impurities on a given size chain length, L. Nominally we chose N - 10 on

a length of 100 equally spaced sites totalling 200 A. We found very large

variations among systems of the same N and L. Ensemble averages and

statistical deviations were calculated for the average force on the

impurities, the force on each impurity and the overall resistivity

(determined from the Landauer formula). Changes in these quantities were

also calculated when one impurity is moved over by one lattice site

(simulating the effect of a diffusion jump) and also when one impurity is

turned off, or destroyed. Our one-dimensional calculations indicate that the

electromigration wind force varies dramatically over the impurities in the

chain. The average force, therefore, may not be a true indication of the

amount of electromigration damage, since the latter may nucleate from the

weakest link in the chain. Furthermore, moving one impurity or destroying

one impurity typically leads to a force distribution (among the remaining

impurities) that is very different from the original force distribution. In

fact, we found that the effect of moving a single impurity can be equivalent

to choosing a totally scrambled configuration of impurities in the ensemble.

The reason that the slight atomic re-arrangement associated with the motion

of one impurity typically gives as drastic an effect as totally scrambling

the positions of all atoms in the system is that the l-d system is, in
28

effect, a delicate interferometer for electron waves.

We found that the particular distribution of electron density, local

field and forces depends sensitively on the specific configuration of

impurity scatterers. We calculated relevant quantities for an ensemble of

identical impurities, each one described by a square-well potential of depth

0.5 a.u. and width one angstrom, which are typical values for metals. One

thousand different impurity configurations were randomly generated. For this

25
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ensemble we calculated histograms giving the number of systems having

electromigration wind forces within certain ranges. Normalizing these

results we obtain a probability distribution function, f, in histogram form.

The distribution functions were calculated for the following quantities: the

average wind force, F, where the average is over the ten impurities in a

given configuration; the wind force on the middle impurity (number five in

the chain of ten), Fmid; and the Landauer resistivity, p, given by Eq. (43).

The results are shown in Figure 4.

The wide extent of the distribution functions is remarkable. Note that

although F is always negative, indicating a force in the direction of the

electron wind, F mid has significant probability of being positive, and can be

quite large compared to the force for the single impurity system, the latter

force being equal to -1.0 units for our chosen normalization. The

resistivity distribution, shown in Fig. 4c, also has a substantial width.

Note the large fluctuations and the increased presence of highly transparent

systems (small R). Large fluctuations are a hallmark of small, low-

dimensional systems, and one can also expect electromigration damage to vary

considerably among such systems. The wide extent of the distributions calls

into question the usefulness of simply reporting ensemble average values for

forces, fields and resistivity.

A basic difficulty in trying to use l-d systems as an indicator of

behavior to be expected in bulk-like 3-d systems is that the response for l-d

systems is extremely sensitive to details concerning location and strength of

the impurity scatterers. The disordered l-d system is unique in this
28

regard. For this reason we did not push the l-d calculations further.

2. Grain Boundary and an STM Probe

We have investigated the local field and wind force exerted on a planar

grain boundary which is oriented perpendicular to the direction of transport
12

in a mesoscopic system, again assuming the jellium model. The voltage drop

occurs in the immediate vicinity of the grain boundary,1 2 ,1 6 but there is no

explicit connection between the net wind force on the grain boundary
12

structure and the resistivity due to the grain boundary. That is, the

analogue of Eq. (49) does not apply.

An interesting question concerns the possibility of measuring the

potential drop across a grain boundary by means of the STM, as has recently
28a

been experimentally attempted. We investigated this possibility
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theoretically1 4 and found that across the grain boundary, the voltage drop

measured by the STM, 6VsTM, is of the same order of magnitude as the true

voltage drop associated with the local transport field, 6VLTF. There are

cases where the STM does measure 6VLTF, and these are the ultra-thin film

case when only one sub-band is occupied and the case of a random distribution

of parallel semi-classical barriers. The fact that 8VsTM and 6VLTF are of

the same order of magnitude is a somewhat surprising result because according

to Eq. (17), the LTF potential is proportional to the local pile-up of

electron density associated with the electron scattering states, while the

STM does not directly measure this electron pile-up. Rather, the STM is most

sensitive to those electron wavefunctions that extend farthest outside the
29

surface, and these electron states are not necessarily representative of

the total set of electron states involved in the LTF. Thus, we do not expect

the STM voltage to measure the LTF. However, we find that the STM gives a

qualitatively useful measure of the LTF. This is shown in Figure 5 where

6VSTM and 6VLTF are plotted as a function of W, which is the thickness of the

thin film which contains the grain boundary. The SV's are in units of the

chemical-potential difference Ap of the reservoirs, and W is in a.u.. We

note the jumps corresponding to quantum size effects associated with density-

of-states discontinuities at sub-band bottoms, as previously mentioned in

regard to Fig. 3. We also point out that 6VsT M exhibits larger quantum size

effects than 6VLTF, and this suggests that the STM can be an effective probe

of the quantum size effects.

3. Impurity Near a Point Contact

The flow of electrons through a point contact gives rise to strong

variations in the local electric field and produces an associated contact

resistance. We now address the point-contact problem in detail.

30Consider the standard theoretical model of a point contact as a

circular aperture, of radius a, on an opaque plane, z - 0, which separates

two halves of an electron gas. A negative potential difference -' , is

applied across the contact from the left-hand side (z<O) to the right-hand

side (z>O). This raises the Fermi level of the electron gas on the left-hand

side by dn amount Ap - eO° with respect to the Fermi level on the right hand

side, thereby causing a net flow of electrons through the aperture, from left

to right. The spreading of electrons as they emerge from the aperture gives

rise to local variations in the electron density, current and potential.

27



The aperture acts as a bottleneck to electron flow, and gives rise to

the so-called "spreading resistance" or Sharvin resistance for a point

contact, namely,
3 0

R 4= h(0Sharvin 2 2 2
F

Eq. (50) holds in the regime where background scattering is negligible and

the aperture diameter is substantially greater than an electron wavelength,

so that wave-diffraction effects at the aperture can be neglected. For the

present, we shall also restrict our analysis to this regime.

To apply the method of Sec. III, we need the electron distribution

function. For definiteness, consider a point r in the z > 0 region. There

is an excess distribution of electrons at this point, gj(r), over and beyond

the equilibrium distribution that would exist in the z > 0 region if no

aperture were present. The excess is due to the additional electrons from

the z < 0 region that can reach point r by propagating ballistically through

the aperture. (Recall that we are in the regime where wave diffraction and

background scattering are neglected.) Thus,

gjk(r) - AP 6(ck- F) for G Q o (r) (51)

where 0 () is the solid angle defined by the sheaf of all straight-line

trajectories emerging from the point r after having come through the

aperture. (When r is on the axis of the aperture, 0 () - 2w[l-z/a 2 2 ].)

In possession of (oand k exp(ik.r), we can apply the machinery

of Sec. III to determine local fields and forces on an impurity near the

aperture. By keeping track of the flux of electrons through the aperture, it

is straightforward to derive the Sharvin resistivity expression (50) in the

absence of an impurity, and to derive the additional resistivity 6R due to an

impurity. The results have been presented elsewhere. 1 2 We found that the

wind force can be expressed in terms of the local current density J(ro ) at

the position of the impurity. Specifically, the expression is
12

0)

( o) - - e.(52)w o e rimimp

where rimp is the bulk impurity scattering time, and is given by Eq. (25).

Expression (52) is a microscopic version of Eq. (24), and takes into account
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that the current may vary substantially in the aperture region due to the

bottleneck effect.

Equation (52) shows that the wind force scales with current density just

as for the bulk system. When an impurity is very near the aperture,

therefore, the actual current density at the aperture is the relevant

quantity, and we can estimate the wind force as

F w: K (53)

where K - Fwlbulk/Jbulk. The approximation (53) is excellent for an impurity

in the aperture (z-0).

Because of the huge current densities that can be supported at a point

contact, the wind-force can be several orders of magnitude greater than in

the bulk case. For a small aperture, the direct force is even more greatly

enhanced with respect to bulk values because the external electric field Eo

at the aperture is on the order of 0 /2a, since the potential drop

essentially occurs within a distance 2a.1 2 ,3 0 To estimate the relative

importance of these forces, we use Eqs. (23) and (53) and find

F_ Zde 22h 
(54)

F K 1e3k2a)

where we have used 'o - IRSharvin and expression (50). Note that, in

principle, IFdi > Fw when a is sufficiently small (provided that kFa >> 1 so

as not to contradict our neglect of diffraction at the aperture). Using

Zd - Z and the calculated value of K for aluminum from Ref. 31, we find that

Eq. (54) gives F d  - I F for self-electromigration in aluminum when a Z
d 2 w14A. This is in marked contrast to the case of bulk free-electron-like

metals where

Fd ZdepO

F blkK (55)

Evaluation of this expression using values appropriate to nearly-free-

electron conductors yields IFdi-values which are typically much smaller than

F w-values even at high temperature.

The relative enhancement of the direct force in the region of a point

contact implies that point contacts may be useful as a probe of the most

elusive and controversial aspect of electromigration theory, namely, the

direct force.
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Thus far we have considered point contacts of essentially zero width and

have restricted attention to the semi-classical regime of larger aperture

sizes, where quantum mechanical wave interference is negligible. Recently it

has been discovered that narrow channels which serve as point contacts in a

2-d electron gas do not act in a semi-classical manner, but rather display
32

the novel phenomenon of conductance quantization. That is, the

conductance, G, as a function of constriction width W takes on values G =

2ne 2/h where n is an integer. (W is continuously varied in these experiments

by means of a gate voltage.)

We have studied the effect of disorder on the quantized conductance by

considering an impurity present in the narrow channel of the point contact.

Since the mean free path is greater than the dimensions of the narrow

channel, weak disorder considerations are sufficient for the actual

experimental situation. The narrow channel is modeled as an electron

waveguide and the edge effect at the ends of th! narrow channel is neglected.

In using this model, we have implicitly assumed that the conductance of the

narrow channel, before any disorder or impurity is introduced, has already

well-developed plateau structures.

The present model for an impurity in a narrow channel is similar to our

model in Sec. IV.C for an impurity in a thin film. In our previous study we

considered the thin film to be a planar waveguide; in the present study we

consider the narrow channel to be a waveguide of finite cross section.

Previously, we found that the residual resistivity due to an impurity in a

thin film exhibits interesting features due to the multiple-scattering of

electrons between the impurity and the surfaces of the thin film. These

features include resonance-like structures and a "transparency effect", which

refers to a vanishing scattering cross section for the impurity. The

transparency effect was found to occur when the film thickness is such that

the Fermi level coincides with a sub-band minimum. Similar effects occur in

narrow constrictions.

The result for a calculation of the conductance of a narrow,

rectangular, 100A thick channel is shown in Fig. 6. The dashed lines show

the conductance in the absence of an impurity. The full curves show the

conductance for an isotropic (s-wave) impurity with phase-shift 6o - 300. We

have used typical experimental values of the 2-d Fermi wavelength (XF = 500A)
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and have taken the impurity to be at a distance of 50A (in width) from the

center of the channel.

The results show that the effect of an impurity is to lower the

conductance and to round-off some of the plateau structure. We remark that

the downward dips between neighboring plateaus are a consequence of multiple

scattering between the impurity and the walls of the channel. This can be

appreciated from the analytical expression that was derived for G and was

presented elsewhere. 13

As far as electromigration in the narrow channel is concerned, we expect

from our previous studies that the wind force is essentially proportional to

the additional resistivity due to the impurity. In that case, since (AG/G)

-(AR/R), it follows that the wind force is proportional to the separation

between the dashed and full curves in Fig. 6. In particular, at a sub-band

bottom (2W/AF - integer), where G remains pinned at the quantized value,

there is no wind force because the impurity is effectively transparent at

that point. At the downward dips between plateaus, however, the wind force

is greatly enhanced due to multiple scattering effects.

V. THERMOMIGRATION

The effect of a temperature gradient on impurities in a solid can be

treated by techniques similar to those employed for electromigration. The

quantity analogous to the electromigration effective valence Z is the heat

of transport, Q, for thermomigration. The driving force for thermomigration

is expressed in the form

- -Q(VT/T) (56)

where VT is the macroscopic temperature gradient in the system. Eq. (56) is

analogous to the expression F - -Z eVl° for electromigration.

We have evaluated Q using Green's function techniques within the Kubo

linear-response formalism, which we previously employed in the study of
21

electromigration. The calculations were performed within a jellium model,

and the electron-impurity coupling was allowed to be arbitrarily strong.
33

This strong-coupling theory represents a significant advance upon previous

thermomigration theories, which are based upon the weak-coupling
34

approximation.

The heat of transport can be schematically written in the following form

as an expansion in inverse powers of EF
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Q - a(E F ) + b(EF T) + c(EFr)-I + ... (57)

In the case of electromigration, one has the analogous expansion
* 1 0~) Er-I

Z - a'(EFr) + b'(EFr) + c'(EFT) + ... (58)

Now since E FF - kFI is typically much greater than unity we expect that the

first term dominates the subsequent terms in Eqs. (57) and (58). In the

electromigration problem we previously found that a' is the electron wind

term and that b' is a consequence of the direct force. (Recall that the

direct force is formally of order (kF1)-1 times the wind force.) The

coefficients a',b' were related to on-energy-shell and off-energy-shell
21

integrations over the T-matrix, respectively. [There are additional

contributions to b' which are properly considered to be vertex corrections to

the on-energy-shell integrations, and these contributions makes it difficult

to calculate the b'-term with accuracy.]

Previous calculations of Q succeeded in calculating only the leading

term in Eq. (57) and this only for the case of weak scattering.3 4  Our
33

strong-coupling '- 3y reproduces that so-called ballistic-theory result,

namely,
2

a(E (k T) 2  d ln[v(E)c(EjL (59)
F - 3- B Zw dE EEF

whe-e Zw - -norvF (EF) , with a(E) being the transport collision-cross-section

at energy E. The quantity Zw is the wind-force contribution to Z , i.e., the

leading term in expansion (58).

We also calculated a new contribution, namely, the second term in
33

expansion (57). This contribution can be written as

b - fEF [Zd(E)-Z(E)]dE (60)

0

where Zd(E) represents the electromigration direct-force valence

corresponding to an electron gas having Fermi energy E, and Z(E) is the

energy-dependent bare-valence, which is related to the impurity scattering

phase shifts 61(E) by the usual Friedel sum-rule, namely, Z(E) -

(2/)X(2~+I)6 (E). We remark that the contribution (60) is not necessarily
'I

small compared to contribution (59) because the latter contains the factor
2

(kBT)2, which is small at low temperature.
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Our heat of transport contribution (60) arises entirely from the

polarization of the electron gas by the impurity in the presence of a thermal

gradient. It is associated with, but not equal to, the difference between

the direct force and the bare valence in electromigration, since these are

given by Zd(EF) and Z(EF), respectively. We have performed model

calculations of b using a Koster-Slater model similar to that which we used

for the electromigration problem. We find that b-values on the order of
33

tenths of EF are possible. Clearly, the contribution (60) is expected to

be most appreciable in those cases where the direct-force valence and the

bare valence are significantly different. It would be worthwhile to make

careful measurements of both Z and Q in such systems and to look for the

predicted correlations. We expect that Zd and Z will differ the most for

strong scatterers. Hydrogen in simple metals would be good systems for such

studies.

VI. CONCLUSION

We have seen how a general theory of conduction and electromigration can

be applied to a wide variety of systems. The approach requires knowledge of

the incident electronic carrier distribution gk" Given this distribution,

all effects of quantum-mechanical multiple scattering are included in the

formalism. We have also considered the role of non-adiabatic atomic recoil

effects, and found them to be appreciable for light impurities at lower

temperatures. A new contribution to the thermomigration driving force has

been obtained, and it has been shown to be related to the direct force in

electromigration.

Our investigations have revealed that there are large variations in the

microscopic currents, the local electric field, the local resistivity, and

the electromigration driving force near surfaces, interfaces, grain

boundaries and dislocations. Calculations have been made for various models,

and they show that marked variations arise from two features: First, the

intrinsic variations due to extended defects, boundaries, interfaces in the

absence of the impurity; and second, the multiple scattering effects

(including resonances) between the intrinsic structure and the impurity

undergoing electromigration. These effects are generally to be expected in

all realistic modelling of electromigration driving forces in metallic

microstructures.
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FIGURE CAPTIONS

Fizure 1 a) Electromigration wind force on an impurity at position z in

the vicinity of a grain boundary in aluminum. The grain

boundary is modelled by a barrier occupying the region d>z>O,

where d - 5 a.u. Results are shown for the cases U /EF - 0.1,

0.5, and 0.99, where U is the barrier height. The curves are

individually normalized to their bulk values, i.e., they are

made to approach unity far from the grain boundary.

b) Local current density parallel to the grain boundary in the

absence of the impurity for the same U /EF values of panel

(a). The curves are normalized to their bulk values.

Figure 2 a) Electromigration wind force on an impurity at position R from

the axis of a dislocation, which is modelled as a core

consisting of a potential barrier of height U and radius a -0

2 a.u. in aluminum. The curves shown are for the cases Uo/EF

- 0.1, 0.5 and 0.9. All quantities are normalized to bulk

values.

b) Local current density parallel to the dislocation in the

absence of the impurity for the same U /EF values of panel

(a). The curves are normalized to their bulk values.

Figure 3 Resistivity (Ap/p.) due to impurities in a thin film is plotted as

a function of logl0 (d), where d is in a.u. The parameters are kF

= 0.415 a.u., I - 200 A, and (a) 6 = 30 ° , n. = 0.412xi0- 2 a.u.;

(b) 6 - 600, n. - 0.918x10 - 3 a.u.; (c) 6 = 90*, n. - 0.926xi0 3

a.u. The Born approximation result is shown in (d). The number

of occupied subbands from 1 to 7 is indicated above the abscissa.

The impurity density values n. were chosen to give the asymptotic

Fuchs-Sondheimer result for p = 0.9. The latter is indicated by

dot-dashed curves in (a), (b), and (c).

Figure 4 Distribution functions for ensemble of 1000 one-dimensional

systems containing ten impurities. Electrons are incident at

Fermi wavevector appropriate to bulk aluminum. The distributions

are for the following:

a) average wind force in a system

b) wind force on the fifth impurity
2c) resistivity of a system in units of ffh/Le
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The wind forces in a) and b) are divided by the magnitude of the

corresponding wind force that would be exerted on a single

impurity. A negative force indicates a force in the direction of

the electron wind.

Figure 5 Voltage drops 6VSTM and 6V LTF acioss a grain boundary in an

aluminum film plotted as a function of W, the film thickness. The

voltages are expressed in units of AA, the chemical potential

d4ifference between the reservoirs. W is in atomic units (1 a.u.

0.53 A).

Figure 6 Conductance G of an electron waveguide plotted as a function of

the width, W, of the 100A thick channel. The curve is for an

attractive weak-scattering impurity with phase shift 6 - 300.0

The perfect waveguide result is indicated by the dashed steps.

The difference between the dashed and full curves is a measure of

the electromigration wind force on the impurity.

36



UO/ E 0.1, 0.5, 0.99
1,.2

-

0.1

0,,4-

" 0.5

02-

-0 -6 -4 -2 0 2 4

Z (in a.u.)

Figure La. Wind force near a cjrain boundary.

37



U 0 EF 0.1, 0.5, 0.99

1 0.5

- -6 -4 -2 0 2 4

z (in a.u.)

Figure lb Current density near a grainboda.
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Figure 3a IuvuritY resistivity vs. film thickness (6 = 300).
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Figure 3b Imurity resistivity vs. film thicdkms ( 6 =0).
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Figure 3d Impirity resistivity vs. film thickness (Born-Apprazdtior).
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